

Santa Ynez River Valley Groundwater Basin Western Management Area Groundwater Sustainability Agency

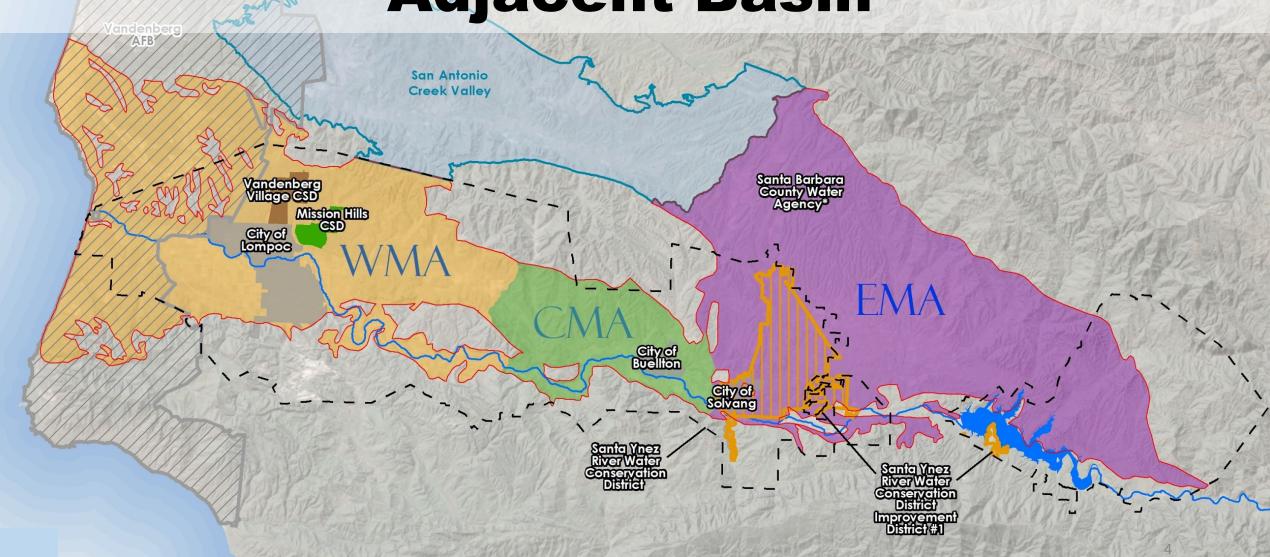
February 2021

Stakeholder Workshop

Housekeeping

- Recording the meeting for the purpose of capturing public feedback
- Recording can be made available upon request
- Opportunities for public feedback and questions throughout the workshop
- Public comments on the GCTM should be submitted to the website:

www.santaynezwater.org


Slide numbers in lower right

Agenda

- Groundwater Conditions Tech Memo Available for Public Comment
- 2. Water Budget, Sustainable Yield, Safe Yield, and Overdraft Discussion
- 3. Groundwater Model Update
- 4. Way Ahead/ Schedule

Basin, Management Areas, & Adjacent Basin

Groundwater Conditions Technical Memo

Describes the current groundwater conditions within the WMA for sustainability indicators:

- Groundwater Elevations and Hydrographs
- Groundwater Storage
- Groundwater Quality
- Seawater Intrusion
- Land Subsidence
- Interconnected Surface Water and Groundwater Dependent Ecosystems
- Currently Available for Public Comment; Due by March 9, 2021

Demonstration of Comment Features on Santa Ynez River Groundwater Basin Communications Portal

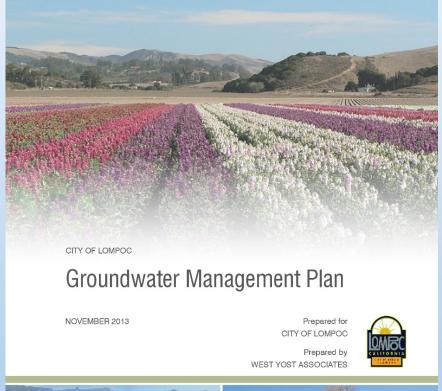
- https://www.santaynezwater.org/
 - Site for entire Santa Ynez River Valley Groundwater Basin
 - WMA page

Groundwater Conditions Technical Memo

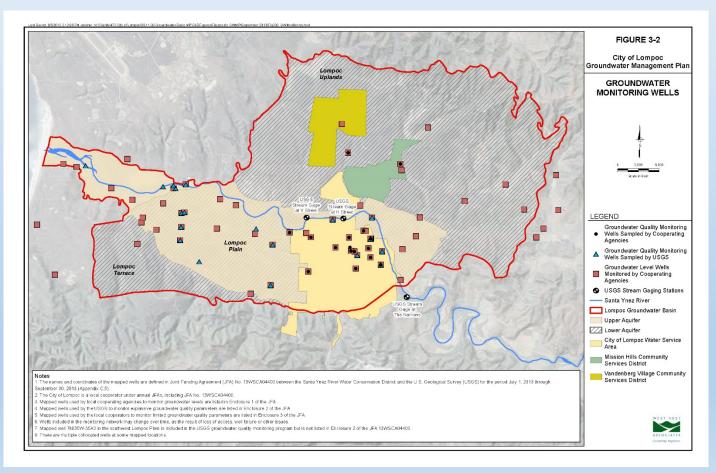
Questions?

Sustainable Yield, "Safe" Yield, and Overdraft Discussion

- Previous Groundwater Management Legislation before SGMA
 - AB3030
- Previous Determinations of Safe Yield and Overdraft in the WMA
 - 1997 Lompoc Plain and Upland groundwater models by USGS and HCI
 - Lompoc Groundwater Management Plan 2013
 - County of Santa Barbara Groundwater Basins Summary Reports (2019, 2014)
 - Annual Engineering Survey and Report on Water Supply Conditions of the Santa Ynez River Water Conservation District
- SGMA's Definitions of Sustainable Yield and Overdraft and Process to Determine



AB3030 1992


- 1992: Assembly Bill 3030 (AB3030) first established California's Groundwater Management Act (GMA).
- Authorized local agencies to prepare and implement groundwater management plans (GMPs) by following a uniform, systematic procedure.
- Agency participation was voluntary.
- Mitigation of conditions of overdraft:
 - ➤ AB3030 Optional
 - ➤ SGMA ----- Required

Lompoc Groundwater Management Plan 2013

Lompoc Groundwater Management Plan 2013

"The historical data for the Lompoc Groundwater Basin indicate that long-term groundwater levels are not declining and groundwater quality is not deteriorating with respect to groundwater use by the City, MHCSD, and VVCSD. Correspondingly, the Lompoc Groundwater Basin is not in overdraft. Nevertheless, that status is dependent on the quantity and quality of Santa Ynez River stream flow at the Narrows and Cachuma Project operations under State Board Order 89-18."

County of Santa Barbara Groundwater Basins Status Report

Public Works Department Water Resources Division Water Agency

> 130 East Victoria Street Santa Barbara, CA 93101 (805) 568-3440

> > October 14, 2014

Other Estimates of Overdraft for the WMA Aquifers

DRAFT
WATER RESOURCES MANAGEMENT PLAN
SANTA YNEZ RIVER WATER CONSERVATION DISTRICT

May 28, 1992

STETSON ENGINEERS INC.
San Rafael West Covina San Clemente
California

Mesa, Arizona

Pre-SGMA Estimates of Perennial ("Safe") Yield

	AFY	USGS 1997	HCI 1997	SYRWCD Water Resources Management Plan 1992	County 2014		
Estimated Perennial Yield (afy)							
Lompoc Plain		20,900	17,500	24,100	mangaged by SWRCB		
Lompoc Upland			2,470	3,300	4,400		
Santa Rita Upland		NA	NA	1,800	4,400		
2015 Groundwater Pumpage			Perennial Yield Less 1-Year Pumping				
Lompoc Plain	23,516		NA	584	NA		
Lompoc Upland	2,719	NA	-249	581	-531		
Santa Rita Upland	2,212		NA	-412			
1982-2018 Groundwater Average Pumpage		Perennial Yield Less 37-year Pumping					
Lompoc Plain	22,800	NA	NA	1,300	NA		
Lompoc Upland	3,100		-630	200	0		
Santa Rita Upland	1,300		NA	500			

Overdraft, Sustainable Yield, and SGMA

"Overdraft" (DWR Bulletin 118): Condition of a groundwater basin in which the amount of water withdrawn by pumping exceeds the amount of water that recharges the basin over a period of years, during which the water supply conditions approximate average conditions. Overdraft can be characterized by groundwater levels that decline over a period of years and never fully recover, even in wet years.

Overdraft is similar in concept to a perennial yield, distinguishing long term decline versus the concept of overdrafting the basin in any single year or even a dry series of years.

Overdraft, Sustainable Yield, Overdraft and SGMA

"Safe Sustainable yield" = Maximum quantity of water, calculated over a base period representative of long-term conditions in the basin and including any temporary surplus, that can be withdrawn annually from a groundwater supply without causing an undesirable result.

GSP Undesirable Results – SMCs

GSP Water Budget Analysis Time Period (W.Y. 1982 – W.Y. 2018) representative of long-term conditions.

Preliminary WMA GSP Water Budget being refined through **DRAFT** groundwater model calibration on a monthly basis.

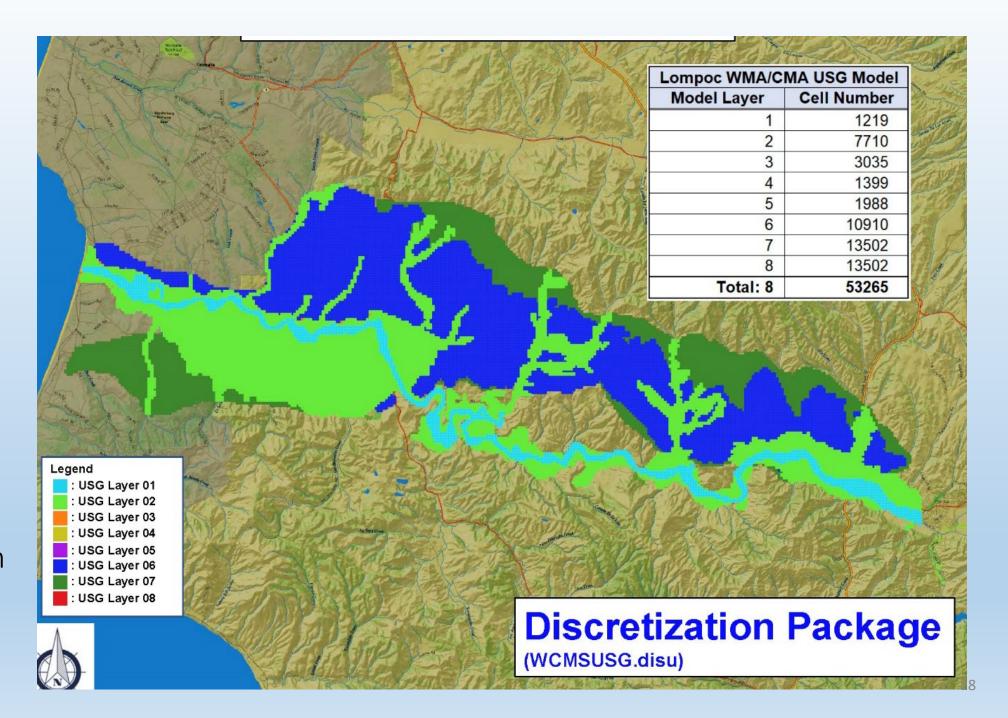
Water Budget Technical Memo

Questions?

Groundwater Model Uses and SGMA:

- Quantitative estimate of groundwater inflows and outflows to the WMA (informs the Water Budget),
- Considerations for seasonality and temporal changes to groundwater availability and recharge,
- Quantitative framework to estimate future potential scenarios, and
- Guide development of SMC thresholds.

Groundwater Modeling Steps:


- Build
- Calibrate
- Run Scenarios

Model Grid

Model cells are 4 acres.

Monthly timestep.

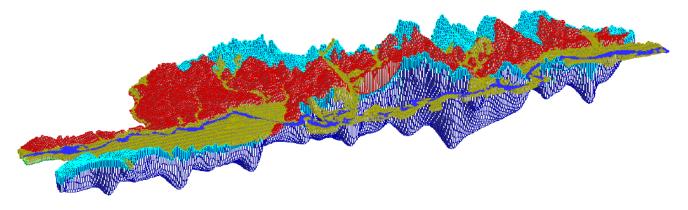
Solvang to Pacific Ocean

The 3D subsurface geologic model was used to export the various groundwater model layers.

Each layer correlates to a different geologic formation (or unit) and identified Principal Aquifer.

These layers are used as the basis for the groundwater model.

The model estimates groundwater flow velocities, recharge rates, and model scenarios to predict future groundwater supply and demand based on current groundwater uses.

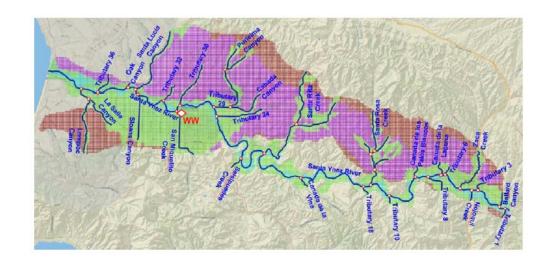

View of all Groundwater Model Layers stacked together

Layer Property Flow Package

(WCMSUSG.lpf)

Model Aquifer Properties

Model Layer	Kx = Ky (ft/day)	Kz (ft/day)	Ss (ft ⁻¹)	Sy	Remark
1	240	0.24	0.0001	0.1	Stream Deposits
2	55	0.055	0.0001	0.1	Upper Alluvium
3	35.5	0.0355	0.0001	0.1	Lower Alluvium
4	2.2	0.0022	0.0001	0.1	Silt
5	300	0.3	0.0001	0.1	Main Water Bearing Zone
6	15	0.015	0.0001	0.1	Older Alluvium
7	50	0.05	0.0001	0.1	Upper Careaga
8	10	0.01	0.0001	0.1	Lower Careaga

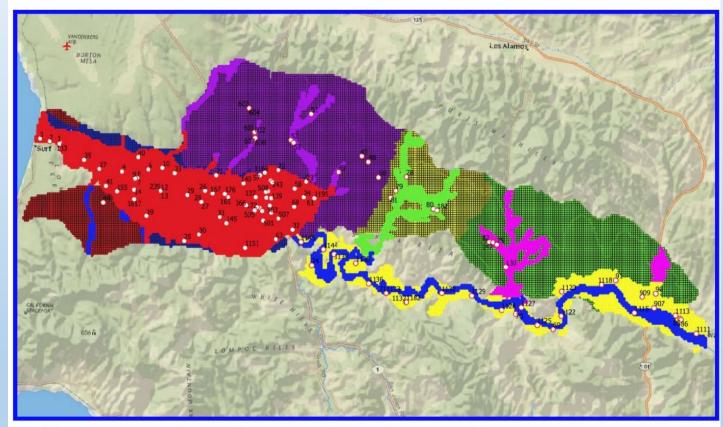


Aquifer properties for each model cells will be adjusted based on model cell locations during model calibration

Stream Flow Routing Package

(WCMSUSG.sfr)

WMA/CMA USG Model Stream Flow System



Visual representation of how stream flows are considered and integrated into the groundwater model.

Stream flows contribute to recharge of the identified Principal Aquifers.

Calibration time period WY 1982-2018

Calibration Target

O: 123 Selected Wells with long-term water level measurements

Water Budgets developed per subareas. For WMA: Santa Rita Upland, Lompoc Upland, Lompoc Terrace, Lompoc Plain, and Santa Ynez River Alluvium subareas

Calibration time period WY 1982-2018

Calibrated to Measured:

- -Groundwater Levels/Contours
- -Streamflow gages
- -Intra/Inter Annual Variability

Questions?

The Way Ahead

- Complete the Groundwater Conditions Tech Memo
- Complete the Water Budget
- Complete the Groundwater Model
- Establish Monitoring Network
- Establish Sustainable Management Criteria Thresholds
- Identify Projects and Management Actions
- Release DRAFT GSP

The Way Ahead

Questions?

Comments can be submitted to the website:

www.santaynezwater.org